

Formula Hybrid

Bridget Taylor, Will Kuang, Musodiq Ogunlowo, Parker Imlay, Neal Smith

Intro

Series hybrid using a capacitor bank

- Control
 - Turn driver inputs into outputs
 - Maintain efficient operation of the internal combustion engine (ICE) under load
- Monitoring
 - Maintain safe operation
- Information
 - Provides driver and off-track team with live updates of the vehicle diagnostics

Problem Description

- Driver Inputs
- System Status Interface
- Motor/Generator/Motor Controllers
- Engine Feedback Loop
- Accumulator Management System

Problem/Solution - Driver Inputs

Problem

- False fault errors continuously reported due to noise signals and absence of error margins.
- Conversion of Brake Pedal into Hydraulic Pressure Transducer

- Improved error margins included in the maximum and minimum threshold of the system
- Transducer is very different from the brake pedal therefore, adjustments such as gain factors would be needed to allow for seamless integration

Problem/Solution - System Status Interface

Problem

- LCD
 - Brightness/Color Contrast
 - Glare-reduction
 - Error message overflow
 - Error-controller mapping
- RF Transmission System
 - Comma List system clarity
 - Necessity for Data log for analysis

- LCD
 - Higher current 3.3V supply for brightness
 - Code manipulation for color contrast/error overflow reduction
 - Coding system for error-controller mapping
 - Application of Glare-reducing Shield
- RF Transmission System
 - Implement GUI and Data log
 - Possible implementation of Auto-save in Data log

Problem/Solution - Motor/Gen/Controller

Problem

- Differentiating left and right Kelly controllers
- No way to tell which controller's message will be read next in the FIFO

- Use CAN-interpreting O-scope to verify that there is no address
- Utilize unused switch status bits to differentiate controllers

Problem/Solution - Engine Feedback Loop

Problem

- Signal noise
- Prototyped sensor board
- Simplistic algorithm

- Shielded cables
- Dedicated PCB
- More complex algorithm
 - Multiple operating regions
 - More inputs (from accumulators)

Problem/Solution - Accumulator Management System

Goal: Maintain equal voltage drops across each capacitor and eliminate low voltage shutdown

Problem

- Manufacturing tolerances on capacitance and ESR can affect voltage divide between capacitors
- AMS prevents generator charging and cells removed from HV system in shutdown event
- Passive cell balancing dissipates extra charge instead of reallocating

- Implement active cell balancing
- Measure capacitance and ESR values of ultracapacitors (pending available equipment)
- Add a high voltage low dropout regulator
- Replace current limiting resistors with fuses in cell junctions to handle increased current needs

Demonstrated Features

- Driver Inputs
 - Mitigation of false error signals
 - Incorporation of hydraulic pressure transducer

• Engine Feedback Loop

- Stable RPM under changing load
- More inputs allowing for multiple control states
- Motor/Controller/Generator
 - Torque vectoring (once addressing issue is solved)
- System Status Interface
 - \circ \quad LCD improvements and Transmission System GUI with data log
- Accumulator Management
 - Active cell balancing to minimize low-voltage shutdown events

Technologies

To obtain:

- Quad/Dual Supercapacitor Auto Balancing (SAB™) MOSFET Array (\$22)
 - <u>http://www.aldinc.com/pdf/ALD810025.pdf</u>
- 5 A Fuses (\$1.66)
 - <u>https://www.mouser.com/datasheet/2/240/Littelfuse_Smart_Glow_MINI_Blade_datasheet-12</u> 91256.pdf
- Circuit boards modified motherboard
- Understanding previously utilized technologies like isolated SPI in depth would be important to contribute improvement to the previous iteration of the project.

Engineering Content

Classes: Power Systems, Electric Vehicles, Control Systems, and Embedded Systems.

Hardware:

Integration of all of the subsystems into a working car Updated design of the motherboard and new design for RPM sensor board Redesigned balancing boards for ultracapacitors

Software: Better control algorithms Solving communication problem with Kelly controllers Updated onboard and offboard user interface

Conclusion

• Hybrid car electrical system design is a collaborative effort between past senior design teams and the current ND Hybrid team

• Project has real customer with real requirements provided by Formula SAE organization

• Hope to have a drivable hybrid vehicle by the end of the year